Milestone Review Flysheet 2017-2018

Institution

Texas Tech University

Vehicle Properties			
Total Length (in)	107		
Diameter (in)	6		
Gross Lift Off Weigh (lb.)	46.12		
Airframe Material(s)	Blue Tube, G10		
Fin Material and Thickness (in)	G10 1/8		
Coupler Length/Shoulder Length(s) (in)	(12,10)/(6,5)		

Stability Analysis			
Center of Pressure (in from nose)	84.25		
Center of Gravity (in from nose)	66.14		
Static Stability Margin (on pad)	2.98		
Static Stability Margin (at rail exit)	3.08		
Thrust-to-Weight Ratio	6.87		
Rail Size/Type and Length (in)	1515: 144		
Rail Exit Velocity (ft/s)	56.43		

Recovery System Properties Drogue Parachute				
N	lanufacturer/Mo		Rocket Man Standard 1.1	
Siz	e/Diameter (in o	or ft)	2 ft	
Altit	ude at Deployme	ent (ft)	Apogee	
Veloc	ity at Deploymer	nt (ft/s)	31.	781
Terminal Velocity (ft/s)			123.967	
Recovery Harness Material		Tubular Nylon with Kevlar		
Recovery Harness Size/Thickness (in)		1		
Recovery Harness Length (ft)		30		
Harness/Airframe Interfaces			ion to bulkhead y 1 inch washers	-
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- Ibs)	2713.111	6924	1.145	

Recovery Electronics		
Altimeter(s)/Timer(s) (Make/Model)	Perfect Flight StratologgerCF	
Redundancy Plan and Backup Deployment Settings	We will have 2 altimiters which are connected to 2 charges for each seperation	
Pad Stay Time (Launch Configuration)	2 Hours	

Milestone

PDR

Motor Properties		
Motor Brand/Designation	Cesaroni L1410-SK	
Max/Average Thrust (lb.)	Avg: 319; Max:366	
Total Impulse (lbf-s)	1085	
Mass Before/After Burn (lb.)	Before: 11.7; After: 4.94	
Liftoff Thrust (lb.)	366	
Motor Retention Method	Thrust Plate/Casing	

Ascent Analysis			
Maximum Velocity (ft/s)	656.17		
Maximum Mach Number	0.58		
Maximum Acceleration (ft/s^2)	231.57		
Predicted Apogee (From Sim.) (ft)	5488.85		

Recovery System Properties					
	Main Parachute				
N	1anufacturer/Mod	lel	Rocket Man Standard 1.1		
Siz	ze/Diameter (in or	ft)	16		
Altit	ude at Deploymer	nt (ft)	750		
Veloc	tity at Deployment	: (ft/s)	123	3.967	
Terminal Velocity (ft/s)			14.573		
Recovery Harness Material		Tubular Nylon with Kevlar			
Recovery Harness Size/Thickness (in)			1		
Recovery Harness Length (ft)		30			
4 Point connection to bulkhead wi Harness/Airframe Interfaces eye-bolts backed by 1 inch washers links		-			
Kinetic Energy Section 1		Section 2	Section 3	Section 4	
of Each Section (Ft- Ibs)	36.99	15.448	70.993		

Recovery Electronics			
Rocket Locators (Make/Model)	Missile Works T3 GPS Tracking System		
Transmitting Frequencies (all - vehicle and payload)	***Required by CDR***		
Ejection System Energetics (ex.	Ejection System Energetics (ex. Black Powder)		
Energetics Mass - Drogue Chute	Primary	1.1	
(grams)	Backup	1.1	
Energetics Mass - Main Chute	Primary	4.1	
(grams)	Backup	4.1	
Energetics Masses - Other	Primary	0.74	
(grams) - If Applicable	Backup	0.74	

Milestone Review Flysheet 2017-2018

Institution	Texas Tech University	MilestonePDR	
	Payload		
	Oven	view	
Payload 1 (official payload)	After landing, the nosecone of the rocket will separate with black powder charges, allowing the rover to exit from its location near the nosecone. The rover will be located on a rotating housing, which utilizes two roller element bearings and an offset center of mass to rotate the rover to an upright position. After attaining an upright position, the rover will be released from its payload housing and will be ejected from the rocket via a compressed spring. The rover will demonstrate the ability to stow, decreasing its effective volume in order to fit a larger rover into the size constraints of the rocket. The rover will rotate its wheels downward, lifting the chassis of the rover. It will also extend its wheel base by pushing the wheels outward after exiting the rocket.		
	Overview		
Payload 2 (non-scored payload)	Incorporating a dynamic apogee control system (DACS) second p		

Test Plans, Status, and Results			
Ejection Charge Tests	For sub scale testing we will build a scale model where we scale down our ejection charges. For ground testing we will fabricate the bulkheads and body tube then test both the 6 and 8 shear pin options to see which fulfills the safety standards we previously set in place		
Sub-scale Test Flights	Sub-Scale launch will be scheduled for the month of December. We plan on ordering parts as soon as possible and beginning construction immediately.		
Full-scale Test Flights	Full scale testing will be held in between the months of February - March, and ideally the DACS will be integrated in the test while the rover is not.		

Milestone Review Flysheet 2017-2018

Institution	Texas Tech University	Milestone	PDR		
	Additional Comm				
	Straight 6" design was used for flysheet because it was chosen as the more favorable of the two.				