Milestone Review Flysheet 2017-2018

Institution Texas Tech University

Milestone CDR

Vehicle Properties			
Total Length (in)	114.567		
Diameter (in)	6		
Gross Lift Off Weigh (lb.)	42.9		
Airframe Material(s)	Blue Tube, G10		
Fin Material and Thickness (in)	G10 3/16in		
Coupler Length/Shoulder Length(s) (in)	(12,10)/(6,5)		

Stability Analysis			
Center of Pressure (in from nose)	84.25		
Center of Gravity (in from nose)	68.9		
Static Stability Margin (on pad)	2.52		
Static Stability Margin (at rail exit)	2.61		
Thrust-to-Weight Ratio	7.66		
Rail Size/Type and Length (in)	1515: 144		
Rail Exit Velocity (ft/s)	62.32		

	Recovery System Properties				
	D	rogue Parach	ute		
N	lanufacturer/Mo	del	Rocket Man Standard 1.1		
Siz	ze/Diameter (in o	or ft)	2 ft		
Altit	ude at Deployme	ent (ft)	Apo	gee	
Veloc	ity at Deploymer	nt (ft/s)	29	.49	
Te	rminal Velocity (ft/s)	120	.154	
Recovery Harness Material		Tubular Nylon with Kevlar			
Recovery Harness Size/Thickness (in)		1			
Recovery Harness Length (ft)		15			
Harness/Airfr	Harness/Airframe Interfaces 2 Point connection to bulkhead with 3/bolts backed by 1 inch washers and Qu		•		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft- lbs)	2376.18	666	9.38		

Recovery Electronics		
Altimeter(s)/Timer(s) (Make/Model)	Perfect Flight StratologgerCF	
Redundancy Plan and Backup Deployment Settings	We will have 2 altimiters which are connected to 2 charges for each seperation	
Pad Stay Time (Launch Configuration)	2 Hours	

Motor Properties		
Motor Brand/Designation	Cesaroni L1395_BS	
Max/Average Thrust (lb.)	400.14/313.77	
Total Impulse (lbf-s)	1100.5	
Mass Before/After Burn (lb.)	Before: 9.5; After: 5.2	
Liftoff Thrust (lb.)	400	
Motor Retention Method	Thrust Plate/Retainer Ring	

Ascent Analysis		
Maximum Velocity (ft/s)	656.17	
Maximum Mach Number	0.58	
Maximum Acceleration (ft/s^2)	231.57	
Predicted Apogee (From Sim.) (ft)	5488.85	

Recovery System Properties				
Main Parachute				
N	lanufacturer/Mod	lel	Rocket Man Standard 1.1	
Siz	ze/Diameter (in or	ft)	16	
Altit	ude at Deploymen	nt (ft)	7	'00
Veloc	ity at Deployment	(ft/s)	113	3.241
Terminal Velocity (ft/s)				13
Recovery Harness Material		Tubular Nylon with Kevlar		
Recovery Harness Size/Thickness (in)		1		
Recovery Harness Length (ft)		40		
Harness/Airf	4 Point connection to bulkhead with 3/8 in airframe Interfaces eye-bolts backed by 1 inch washers, and Qu links			-
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- lbs)	27.82	12.81	56.87	

Recovery Electronics			
Rocket Locators (Make/Model)	Missile Works T3 GPS Tracking System		
Transmitting Frequencies (all - vehicle and payload)	***Required by CDR***		
Ejection System Energetics (ex.	Black Powder) 4F Black Powder		
Energetics Mass - Drogue Chute	Primary	4.3	
(grams)	Backup	5.2	
Energetics Mass - Main Chute	Primary	7.8	
(grams)	Backup	9.4	
Energetics Masses - Other	Primary	3.1	
(grams) - If Applicable	Backup	3.7	

Milestone Review Flysheet 2017-2018

Institution	Texas Tech University	Milestone CDR					
-	•	-					
	Payload						
	Overvi	ew					
Payload 1 (official payload)	After landing, the nosecone of the rocket will separate with black powder charges, allowing the rover to exit from its location near the nosecone. The rover will be located on a rotating housing, which utilizes two roller element bearings and an offset center of mass to rotate the rover to an upright position. After attaining an upright position, the rover will be released from its payload housing and will be ejected from the rocket via a compressed spring. The rover will demonstrate the ability to stow, decreasing its effective volume in order to fit a larger rover into the size constraints of the rocket. The rover will rotate its wheels downward, lifting the chassis of the rover. It will also extend its wheel base by pushing the wheels outward after exiting the rocket.						
	Overvi	ew					
Payload 2 (non-scored payload)	Incorporating a dynamic apogee control	system (DACS) into the launch vehicle.					

	Test Plans, Status, and Results			
Ejection Charge Tests	For sub scale testing we built a sub scale model where wescaled down our ejection charges as a result of the scaled down pressure chambers. For ground testing we will fabricate the bulkheads and body tube then test both the 3-4 shear pin options to see which fulfills the safety standards we previously set in place			
Sub-scale Test Flights	Sub-Scale launch was held on January 8th. The flight went succesfully and confirmed processes and verified methods that will be applied to the build and launch of he full-scale.			
Full-scale Test Flights	Full scale testing will be held in between the months of February - March. Parts are ordered, and construction has begun.			

Milestone Review Flysheet 2017-2018

Institution	Texas Tech University	Milestone	CDR
	-	<u> </u>	
	Additional Commo		
Raider 2	2 test launch weather conditions will not reflect seen in Alab	pama, as the launch will ta	ke place in Amarillo, Texas.